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ABSTRACT

We present a new spatial discretization of the discrete-ordinates transport equation in two-
dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes.  This discretization is a 
discontinuous finite element method that utilizes the piecewise linear basis functions developed by 
Stone and Adams.  We describe an asymptotic analysis that shows this method to be accurate for 
many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be 
applied to radiative transfer problems with these types of meshes.  We also present numerical 
results for multiple problems on quadrilateral grids and compare these results to the well-known 
bi-linear discontinuous finite element method.

1. INTRODUCTION

Accurate solutions of radiative transfer problems require accurate solutions of the linear 
Boltzmann transport equation.  When a deterministic approach is followed, discontinuous finite 
element methods (DFEM) are often used as spatial discretizations.  Using an asymptotic 
analysis, Adams [1] has developed requirements for DFEM weight and basis functions to 
produce accurate discretizations in optically thick, highly scattering regions in problems 
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described by Cartesian coordinates.  This physical regime, often called the thick diffusion limit, 
is highly relevant to many radiative transfer problems.  In this paper, we apply the Piecewise 
Linear Discontinuous Finite Element (PWLD) spatial discretization, first developed by Stone and
Adams [2, 3] for 2D Cartesian (XY) geometry, to the 2D cylindrical (RZ) transport equation.  
Using Adams’s analysis we show that the PWLD method is accurate in diffusion limit on 
arbitrary polygonal grids for RZ geometry.  Previously, only Upstream Corner Balance [4], a 
DFEM based upon Wachspress’s rational basis functions [5], and the Continuous Finite Element-
Based, Discontinuous Finite Element Method [6] have been shown to be accurate in the diffusion 
limit for arbitrary polygonal cells.  We test the PWLD method in RZ geometry and compare 
against theoretical predictions and against the Bi-linear Discontinuous Finite Element (BLD) 
method on a variety of problems with quadrilateral spatial cells.  PWLD results agree with 
predictions and are very close to BLD results.  We also discuss the behavior of PWLD for “poor” 
cells such as re-entrant cells and cells with internal angles of 180 degrees.  We conclude that 
PWLD is an excellent candidate for RZ problems with all manner of polygonal cells, including 
cells with “hanging nodes” arising from local mesh refinement as well as distorted cells arising 
from Lagrangian hydrodynamics.

2. DERIVATION OF THE PWLD METHOD IN RZ GEOMETRY

We begin our derivation of the PWLD method in RZ geometry with a brief description of the 
angular differencing we applied to the RZ equation.  We then derive a general DFEM 
discretization of the angularly differenced RZ equations for polygonal grids.  We finish the 
description of the method by defining the PWL basis functions, and conclude this section with a 
discussion about “lumping” the RZ discretization.  

2.1 Angular discretization applied to the RZ transport equation

The time-independent, monoenergetic discrete-ordinates RZ transport equation with isotropic 
scattering in conservation form is
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where  is the unknown angular intensity,  is the macroscopic total cross section, s is the 
macroscopic scattering cross section,  = re 


� = cos = radial component of particle direction,  

 = ze 

� = axial component of particle direction,  = sin,  is the scalar flux, and S is a fixed 

source.  The m,n subscripts indicate a level-based quadrature set in which n is a level of 
quadrature directions with constant , and m denotes a quadrature point on that level.  We 
difference the angular derivative term in Eq. (1) using the method described by Lewis and Miller 
[7].
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The value of 1 ,2 n
 is found using a starting-direction equation, which is an XY transport 

equation along the  
1

21 n    and n direction.  This starting direction equation is
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To close the system, we use the weighted diamond relationship developed by Morel and Montry 
[8]:

 , , 1 , 1, ,2 2
1 ,m n m n m nm n m n

    
 

   (5)

where the values of  linearly interpolate the values of  on each level.  Eqs. (2), (4), and (5)
define a system of Mn+1 equations and Mn+1 unknowns on each level in the quadrature set, 
where Mn is the number of quadrature directions on level n.

2.1 General DFEM discretization

The application of a discontinuous finite element method to the angularly discretized equations is 
straightforward and described in detail in multiple references [1,2,3,5, 6, 9,10].  We must apply 
the spatial discretization to both the regular and starting direction equations, Eqs. (2) and (4), 
respectively.  A few simple steps are required to derive the DFEM spatial discretization.

1. Divide the spatial domain into domain-filling non-overlapping cells. 
2. Multiply the angularly discretized equations by a weight function, and integrate over a 

spatial cell.
3. Apply Gauss’s Divergence Theorem to the integrals of the gradient term, resulting in a 

surface integral and a volume integral.  Allow the surface intensity to differ from the cell-
interior intensity evaluated at the surface.  Apply the theorem a second time to the 
resultant volume integral, which produces a surface integral involving a difference of 
surface and interior intensities and a volume integral of the gradient of the intensity.

4. Expand spatially dependent variables in terms of a set of basis functions:



A Piecewise Linear Discontinuous Finite Element Discretization of the Transport Equation in 2D Cylindrical Geometry

2009 International Conference on Mathematics, Computational 
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/4

   

   

   

, , ,
1

1

1

J

m n m n j j
j

J

j j
j

J

j j
j

r u r

r u r

S r S u r

 

 



















 

 

 

(6)

5. Define each surface intensity to be the intensity from the upstream cell or boundary 
condition.

This produces a single-cell matrix that determines the unknowns in each cell in terms of its 
source and its incident intensities (from upstream cells or boundary conditions).  The size of this 
matrix is JxJ where J is the number of basis functions used to approximate the flux in the cell.  
The ith row of a single-cell matrix is given by:
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where the  terms are coefficients generated by the differencing of the angular derivative term, 
, ,m n j is the angular flux inside the cell, , ,m n j is the angular flux on the cell surface, j is the 

scalar flux inside the cell, Sj is the source coefficient if we interpolate the source with the basis 
functions, vi is the ith weight function, and uj is the jth basis function.  We have assumed that the 
cross sections are constant inside a spatial cell.  The DFEM form of the corresponding starting-
direction equation is
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The angular flux on the surface of the cell is the upwind value:
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For the remainder of this paper we assume a Galerkin DFEM, which means that the ith weight 
function is the same as the ith basis function.  We note that Eqs. (7) - (9) are general, holding for 
any set of basis functions and cell shapes. 

2.2 The PWL basis functions

The PWL basis functions were originally developed by Stone and Adams [2,3] for XY spatial 
discretizations on arbitrary polygons.  To build these functions, we divide each polygonal cell 
into subcells called sides.  A side, shown in Figure 1, is a triangle defined by a cell center point 
and two adjacent vertices.  

Figure 1:  The shaded triangle represents a side in a hexagonal cell.

Mathematically, the PWL basis functions are defined as

     , , ,i i i cu r z t r z t r z  , (10)

where the t functions are standard linear functions on triangles.  The support point for ti is the ith

vertex and the support point for tc is the cell center. The i value is a weighting parameter for the 
tc contributions, and is defined such that

1
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All calculations presented in this paper use a value of

1
i N

  , (12)
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where N is the number of sides in the cell.  A PWL basis function is shown in
Figure 2.

Figure 2:  A PWL basis function for support point i on an arbitrary polygon

When the PWL basis functions are applied to Eqs. (7) and (8) they are easily integrated by 
dividing the integrals into sums of integrals over sides, causing the integrals in these equations to 
become  
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On triangles, the PWL basis functions collapse to the same basis functions used in the Linear 
Discontinuous Finite Element Method (LD).  As a result, the PWLD method is exactly the same 
as the LD method for triangular grids.  

DFEMs are often “lumped” to improve robustness (resistance to oscillations, discontinuities, and 
negative solutions).  Any integral in Eqs. (7) and (8) can be lumped by
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which makes the resultant system of equations more diagonally dominant.  For RZ geometry we 
explore two choices for lumping the system.  In the “surface-mass” lumping scheme we lump the 
surface, collision, and source terms.  The second scheme, a “generalized lumping” scheme 
designed by Morel and Warsa [11] specifically for RZ, also lumps the angular-derivative term in 
a careful way that does not destroy desirable solution properties. 
  

3.  ASYMPTOTIC DIFFUSION LIMIT ANALYSIS

We have performed an asymptotic diffusion limit analysis for interior and boundary cells on the 
RZ PWLD spatial discretization of the transport equation [9].  This analysis is based on previous 
DFEM asymptotic analyses [1,10, 12, 13].  The analysis begins by scaling the physical 
parameters in Eqs. (7) and (8) such that the problem becomes optically thick and diffusive as the 
small parameter, , tends to zero.

s a

S S
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 
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We guess that the fluxes in these equations can be expanded in a power series in ,
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We then collect and equate like order terms to determine the behavior of the flux in the thick 
diffusion limit.  In this limit, the analytic transport equation results in a leading-order scalar flux 
that is isotropic and described by the diffusion equation.  For this reason, a method is accurate in 
the diffusion limit if its discretized leading-order scalar flux is isotropic and satisfies an accurate 
discretized form of the correct diffusion equation with accurate boundary conditions.  In the 
interest of brevity, we will only summarize the important results of this analysis in this paper.

For interior cells, from the O(1/) terms we find that the leading-order angular flux is isotropic in 
both the regular and starting direction equations.  

       0 0 0 0
, , 1 1/ 2, ,, ,2

1
4m n j m n j jn j

   
   , all m and n. (17)

Then, by taking the zeroth angular moment of the O(1) terms, we find that the leading-order flux 
requires more than just surface integral terms to fully determine it.  Furthermore, if lumping is 
applied to the surface integral terms, we find that the leading-order fluxes are pointwise 
continuous in the diffusion limit. A Fick’s law relationship which equates the leading-order 
scalar flux to the first-order current at vertex i in spatial cell k is found from the first angular 
moment of the O(1) terms.  If lumping is applied to the mass matrix this is:
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(Without mass-matrix lumping this relation involves the inverse of the mass matrix.)  Finally, we 
take the zeroth angular moment of the O() terms.  We sum O() equations for all cells 
surrounding vertex i, resulting in
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Note that the current, J, in Eq. (20) has been decomposed into its vector components.  The
coupled system of Eqs. (18) and (20) represent the ith row of the coefficient matrix of the 
resultant discretization of the RZ diffusion equation that describes the leading-order scalar flux 
when vertex i is in the interior of the problem.

On a logically rectangular grid, the diffusion discretization results in a nine-point stencil.  This 
diffusion discretization is not symmetric positive definite (SPD) if matrices other than the 
collision matrix are lumped.  If we chose not to lump the surface terms, the resultant diffusion 
discretization would be SPD, but the leading-order scalar flux would not be pointwise 
continuous.  It is important to note that the analysis performed for the RZ PWLD method 
assumed an arbitrary polygonal grid.

We also performed the asymptotic diffusion limit analysis for boundary cells, which resulted in 
behavior similar to other DFEMs [1].  If we assume that the incident partial current is spatially 
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continuous, the leading-order flux on the boundary will be pointwise continuous for surface-
lumped methods.  Furthermore, the leading-order boundary condition for our DFEM has normal 
and tangential components.  The normal component of this boundary condition accurately 
approximates the analytic leading-order boundary condition.  However, the tangential component 
can act as a contamination term in the interior of the problem.  For orthogonal cells, the 
tangential component of the boundary condition does not contaminate the interior solutions.  For 
non-orthogonal cells, errors from the tangential component can propagate into the interior of the 
problem.  This troubling tangential term in the boundary condition appears for all DFEMs.  A 
significant amount of work is still required to quantify the effect of non-orthogonal boundary 
cells on the accuracy of DFEMs in the diffusion limit. The boundary cell analysis was also 
performed for an arbitrary polygonal grid, although not all of the special-case results are 
discussed here [4, 9].  

4.  NUMERICAL TEST PROBLEMS

We implemented the PWLD discretization for the RZ transport equation in Capsaicin, a transport 
code being developed at Los Alamos National Laboratory.  To test the effectiveness of the 
method, we examine the truncation error of the PWLD method compared with the BLD method 
on a variety of problems.  Truncation error test problems are used to determine the order by 
which the solution of the numerical method converges to the actual solution. This order is n if the 
error in the solution decreases by a factor of to 2n every time the mesh is refined by a factor of 
two in each dimension.  

The first truncation error problem has a manufactured solution, 

     , sin 1 sinr z r r z       . (21)

We used a level symmetric quadrature set for this test problem.  We first tested the unlumped 
version of PWL on both rectangular and randomized quadrilateral meshes.  Figure 3 shows the 
truncation error of PWL and BLD on these meshes.  The reference line in this figure and all 
subsequent truncation error figures is an arbitrary line with a slope representative of second-
order convergence behavior. The behavior and magnitude of the error for both unlumped 
methods is almost identical, and the error between the two meshes is extremely close.  
Furthermore, both methods exhibit second-order convergence behavior, which is expected. 
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Figure 3:  Truncation error of unlumped methods

We then tested both the surface-mass lumped and the generalized lumped versions of PWL and 
BLD on the orthogonal and random meshes.  The results of these test problems are shown in 
Figure 4.  This plot shows that, for this test problem, the type of lumping makes no difference in 
the solution.  These results also suggest that the lumped solutions on random grids are slightly 
less accurate than lumped solutions on orthogonal grids.  Comparison of the two figures shows 
that for this problem (whose solution is very smooth), the L2 errors of the lumped methods are 
smaller than those of the unlumped methods. 
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Figure 4:  Truncation error of lumped methods

We also studied the truncation error of the lumped methods for a diffusive problem, in which the 
cells are small relative to diffusion lengths, but large relative to mean free paths.  This problem 
was developed by Morel and Warsa to test their generalized lumping scheme [11].  It is a one-
dimensional problem that has an analytic solution of
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(22)

with a total cross section of 8192 cm-1 and a scattering ratio of 0.9999987.  L in Eq. (22) is the 
diffusion length, 1/[t (3(1–c))1/2].  We ran this problem on a randomized quadrilateral mesh of N
cells in the z direction and N/4 cells in the r direction, and used an S8 product Gauss-Chebyshev 
quadrature set.  The results of this truncation error problem, shown in Figure 5, indicate that 
lumped PWLD has almost identical accuracy as lumped BLD in the thick diffusive limit, and 
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that all methods exhibit second-order convergence behavior.  These results also indicate that the 
two PWLD lumping methods have nearly identical convergence properties for this problem.

Figure 5:  Truncation Error of lumped methods on diffusive test problem

This problem not only reinforces the results of our diffusion limit analysis, it also underscores 
the simplicity of adding the PWLD method to a mature code that contains the BLD method.  In 
Capsaicin, we were able to use for PWLD the Diffusion Synthetic Acceleration (DSA) scheme 
that was implemented for BLD.  Recently it has been shown that using DSA as a preconditioner 
for a GMRES iterative solution can produce rapid and robust convergence even without a 
“consistent” diffusion discretization [14,15].  Our successful use of the existing diffusion 
discretization in Capsaicin adds further evidence to this effect.  This is also partly due to 
PWLD’s close relationship to BLD and its similar robustness and accuracy. 

5. DISCUSSION

Given that PWLD is identical to LD on triangles and provides almost the same results as BLD on 
quadrilaterals, it is fair to ask what motivation exists to use it instead of LD or BLD.  We are 
motivated by flexibility that it offers in the spatial grids used for transport solutions and by the 
simplicity of having a single method that handles every grid types.  When PWLD is coded for 
general polygons, as it is in our codes, it can provide accurate solutions given grids with any 
combination of the following kinds of cells:
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 Triangles with “hanging nodes,” as from local mesh refinement (treated as quadrilaterals 
with 180-degree corners); 

 Quadrilaterals with hanging nodes, as from local mesh refinement (treated as pentagons 
with 180-degree corners); 

 Re-entrant polygons, for example arising from Lagrangian hydrodynamics;
 “Cut” cells formed by dividing standard cells into two or more polygons to accurately 

represent material interfaces.

Testing and analysis indicate that the method performs well even with interior angles that reach 
and exceed 180 degrees [9].  Thus, while standard grid generators may never routinely generate 
polygons with more than four sides, we see significant practical value in being able to handle the 
cases described above as well as all combinations of them.  

6. CONCLUSIONS 

The results from the asymptotic diffusion limit analysis and the numerical test problems indicate 
that the PWLD method is an excellent candidate for discretizing the two-dimensional (RZ)
transport equation.  In the thick diffusion limit the leading-order PWLD solution satisfies an 
accurate diffusion discretization, as desired.  This remains true in the presence of unresolved 
boundary layers, although PWLD shares with other DFEMs the property that distorted boundary 
cells can cause some boundary layers to introduce errors into the leading-order solution.  Our 
preliminary test problems show that the PWLD method is as accurate as the BLD method on 
problems in the thin and diffusion limits.  PWLD is identical to LD on triangles and provides 
essentially the same solution as BLD on quadrilaterals, but is easily applied to higher polygons 
(whereas LD and BLD fail on such polygons in diffusive problems).  We see significant utility in 
the ability to directly treat polygonal cells, including hanging-node cells that arise from local 
mesh refinement as well as “cut cells” obtained, for example, by dividing rectangular cells to 
represent non-orthogonal interfaces.
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